Facial Recognition Bans: What Do They Mean For AI
This week IBM, Microsoft and Amazon announced that they would suspend the sale of their facial recognition technology to law enforcement agencies. It’s yet another sign of the dramatic impact of the protests for social justice.
But the moves from the tech giants also illustrate the inherent risks of AI, especially when it comes to bias and the potential for invasion of privacy. Note that there are already indications that Congress will take action to regulate the technology. In the meantime, many cities have already instituted bans, such San Francisco.
Because of the advances of deep learning and faster systems for processing enormous amounts of data, facial recognition has certainly seen major strides over the past decade. Yet there is still much to be done.
“AI face recognition technology is damn good, but it is not very robust,” said Ken Bodnar, who is an AI researcher. “This means that the neural network is well trained and capable of amazing feats of identification, but if one little parameter is off, it mis-identifies you. The way that it works, is that everything is a probability with AI. So when it looks at a face, it has a range of proprietary algorithms and parameters it measures. The most accurate AI tools are Deep Belief Networks that winnow out features like double chins, eye distance, hair type, bushy eyebrows, fat lips, age parameters etc. But the ‘not-very-robust’ categorization means that it is easy to fool because of the intrinsic nature of the way that neural networks work.” Read On:
Comments
Facial Recognition Bans: What Do They Mean For AI — No Comments
HTML tags allowed in your comment: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>